

HB Calibration from TB 2002 data

Shuichi Kunori Jordan Damgov 04-Dec-2002

Data Flow

>>> <u>front end</u> <<<

Scint. Lights ->Tile->Fiber1&2->OptCable ->HPD->Amp->ADC(7bits)-> Charge (for 5-10xings) ->(L1Path) ->(DAQPath)

>>> <u>L1Path</u> <<<

```
->HTR (ch)
E<sub>T</sub>(L1Primitive: 8bits:non-linear)
->L1 LUT (ch)
E<sub>T</sub>(4x4 HcTower: 8bits:linear)
->L1Calo
E<sub>T</sub>(L1jets),Et(L1tau),Et(L1MET)
->L1CaloGlobal(Threshold (obj))
->L1Global
L1Trigger
```

>>> after <u>DAQPath</u> <<<

```
->ReadoutAnalyzer (ch)

E<sub>T</sub>(channel)
->TowerCreator

E<sub>T</sub>(Ec+Hc Tower)
->Jet/MET/tauReco

E<sub>T</sub>(jetR),Et(tauR),Et(METR)
->EtCaloCorrection (obj)
(corr. for linearlity)

E<sub>T</sub>(JetC),Et(tauC),Et(METC)
->EtPhysCorrection (obj)
(corr. for out-of-cone)

E<sub>T</sub>(Parton)
```

Calibration/correction (ch) - channel by channel (obj) - phys. Obj, (jet, tau, MET)

Tools

A) Megatile scanner:

- Collimated Co⁶⁰ gamma source
- each tile: light yield
- during construction all tiles

B) Moving radio active source:

- Co⁶⁰ gamma source
- full chain: gain
- during CMS-open (manual) all tiles
- during off beam time (remote) tiles in layer 0 & 9

C) UV Laser:

- full chain: timing, gain-change
- during off beam time tiles in layer 0 & 9 all RBX

D) Blue LED:

- timing, gain change
- during the off beam time all RBX

E) Test beam

- normalization betweenGeV vs. ADC vs. A,B,C,D
- ratios: elec/pion, muon/pion
- before assembly a few wedges

F) Physics events

- mip signal, link to HO muon
- calo energy scale (e/pi) charged hadron
- physics energy scale
 photon+jet balancing
 Z+jet balancing
 di-jets balancing
 di-jet mass
 W->jj in top decay
- >> non-linear response
- >> pile-up effect

Scenario (HB/HE)

(same to HF)

1) Before megatile insertion

megatile scanner: all tilesmoving wire source: all tiles

2.1) After megatile insertion

- moving wire source: all tiles / 2 layer

- UV laser: 2 layers/wedge

2.2) After megatile insertion

- test beam: a few wedges.

Absolute calib.
Accuracy of 2%
for single particle

3) Before closing the CMS

- moving wire source: all tiles
- UV laser & blue LED: all RBX

(do 3, about once/year)

4) Beam off times

- moving wire source: 2layer/wedge

- UV laser: 2 laer/wedge

- UV laser & blue LED: all RBX

5) Beam on (in situ)

- jets / tau / MET

ECAL+HCAL

Monitor for change with time Accuracy < 1%

once/month

a few times/day (?)

HCAL+"ECAL" Layout

Calibrate 4 wedges '02. **Check HO** response as tail catcher and as muon trigger element. In '03 use PPP to study 40 MHz beam and HE/HB transition region.

Testbeam Layout

HB 2 Wedges - 16η x 8φ

300GeV π^-

GeV/ADC

Source scan uses QIE at 25 nsec to sum up to a D.C. current. Signal to noise is good (3 mCu). Assignment of calibration constant to tile is simple.

Wire Source Scan

Wire Source each point – guassian fit to histograms

Some channels are noisier than others.

Wire Source Data

Source vs Beam Data

Calibration Constants from Wire Source Data

Format (original)

Wedge (1-2)

Phi (1-4)

Layer (0-16)

Tower (1-18)

Peak (extend+retract)/2.0

Dpeak (extend-retract)/2.0

Event number (extend peak)

Days since 01-March-1999

Pedestal

Pedestal RMS

New

Phi(1-8)

Tower (1-18)

Layer (0-16)

Amplitude(fit)

Amplitude(max)

Amplitude RMS (fit)

Pedestal rms

Pedestal deviation

Amplitude (cap1)

Amplitude (cap2)

Amplitude (cap3)

Amplitude (cap4)

HTR#

Channel #

Run#

Need to finalize the format.

Calibration Data Sets (HB)

Lab5

- Collimated source
- Moving wire source

BId186

Moving wire source

TB2002

- Moving wire source
 - Root file/root scritpe/Fermilab&CERN → simple ASCII file
- Beam data
 - Root file/reco+scritps/Fermilab&CERN → simple ASCII file

Detector components

- Geometry absorbers, scintillator tiles, fibers
- HPD QE & gain
- QIE/card linearity (each cap ID)
- → Need naming and labeling scheme

Plan: initial version in "database" by March 2003.

Some other results

HB Testbeam 2002

Dates:

June 26-July 1 "ECAL" // July 24-July 31 HF // Aug. 01- Sep. 18 HB

Goals (HB):

- Demonstrate 144ch working
- Demonstrate DCS going
- Source data vs GeV/ADC
- Muon signal in HO for muon trigger
- Eta dependence (attenuation)
- Eta dependence (timing)
- Pulse shape (needs TDC)
- Weight in Layer 0
- → start construction of Calibration Database

Additional Goals (left over from 1999TB)

- Crack between wedges
- e/pi (resolution and linearity)
- Cerenkov light in clear fibers

(beam: $e/\mu/\pi$)

Noise Level

Pedestal RMS distribution

Variation in eta

Eta 1/attenuation

2 0.947 3 0.947 0.918 4 5 0.904 6 0.887 0.847 8 0.862 9 0.831 10 0.825 0.786 11 12 0.756 13 0.769 14 0.730 15 0.618

0.605

16

Pulse Shape

E in 30ns time slices

Reconstructed pulse shape

Energy Collection

Variation 2% (5%)

1 TS- 3ns (6ns)

2 TS- 6ns (12ns)

eta dependence timing

Calculated using corrected TS mean.

~10ns spread in eta 0 – 16

Crack between Wedges 100GeV electron

